3.6 GEOLOGY, SOILS, AND PALEONTOLOGICAL RESOURCES

This section describes the geology, soils, and paleontological resources setting and regulatory framework and addresses the potential effects of the EIS Alternatives related to geology, soils, and paleontological resources.

3.6.1 Affected Environment

Regional Physiographic and Geologic Setting

The sites studied in this EIS are the existing SFVAMC Fort Miley Campus, adjacent to the Richmond District, and the Mission Bay area. Both of these areas are located within the northern portion of the San Francisco peninsula in the San Francisco North U.S. Geological Survey (USGS) 7.5-Minute Quadrangle. San Francisco is located within the Coast Ranges geomorphic province, a relatively young geologically and seismically active region on the western margin of the North American plate. In general, the Coast Ranges comprise a series of discontinuous northwest-southeast trending mountain ranges, valleys, and ridges (CGS, 2002). San Francisco rests on a foundation of Franciscan formation bedrock in a northwest-trending band that cuts diagonally across the city. This geologic formation known as the Franciscan Formation is composed of many different types of rock—graywacke, shale, greenstone (altered volcanic rock), basalt, chert (ancient silica-rich ocean deposits), and sandstone that originated as ancient sea floor sediments (CGS, 2002).

Faulting and Seismicity

Existing SFVAMC Fort Miley Campus and Mission Bay Area

Because faults and seismic activity are regional in nature, the discussion below relates to both the existing SFVAMC Fort Miley Campus and the Mission Bay area.

The San Francisco Bay Area is located in a seismically active region near the boundary between two major tectonic plates, the Pacific Plate to the southwest and the North American Plate to the northeast. These two plates move relative to each other in a predominantly lateral manner, with the San Andreas Fault Zone at the junction. The Pacific Plate, on the west side of the fault zone, is moving north relative to the North American Plate on the east. Since approximately 23 million years ago, about 200 miles of right-lateral slip has occurred along the San Andreas Fault Zone to accommodate the relative movement between these two plates (USGS, 2002). The relative movement between the Pacific and the North American Plates generally occurs across a 50-mile zone extending from the San Gregorio Fault in the southwest to the Great Valley Thrust Belt to the northeast. In addition to the right-lateral slip movement between tectonic plates, a compressional component of relative movement has developed between the Pacific Plate and a smaller segment of the North American Plate at the latitude of the San Francisco Bay during the last 3.5 million years. Strain produced by the relative motions of these plates is relieved by right-lateral strike-slip faulting on the San Andreas and related faults, and by vertical reverse-slip displacement on the Great Valley and other thrust faults in the central California area.
The region’s seismic faults can be classified as historically active, active, sufficiently active and well defined, or inactive, as defined below (CGS, 2007).

- **Historically active faults** are faults that have generated earthquakes accompanied by surface rupture during historic time (approximately the last 200 years) or that exhibit a seismic fault creep (slow incremental movement along a fault that does not entail earthquake activity).

- **Active faults** show geologic evidence of movement within Holocene time (approximately the last 11,700 years).

- **Sufficiently active and well-defined faults** show geologic evidence of movement during the Holocene along one or more of their segments or branches, and their trace may be identified by direct or indirect methods.

- **Inactive faults** show direct geologic evidence of inactivity (that is, no displacement) during all of Quaternary time or longer.

The existing SFVAMC Fort Miley Campus and the Mission Bay area both lie within a region of active faulting and high seismicity associated with the San Andreas Fault system. The San Andreas Fault system is a zone of major, northwest-trending active strike-slip faults consisting of, from east to west, the Calaveras, Hayward, San Andreas, and San Gregorio–Hosgri faults (Figure 3.6-1). The San Andreas Fault system has been the source of numerous moderate to large-magnitude historical earthquakes that caused strong ground shaking in the project area, including the 1906 San Francisco and 1989 Loma Prieta earthquakes. Future strong ground shaking from nearby large-magnitude earthquakes is a virtual certainty and should be a consideration in the design of the new project facilities and components.

The San Andreas Fault lies approximately 5.6 kilometers (3.5 miles) southwest of the existing SFVAMC Fort Miley Campus at its closest point. Several other active and potentially active faults occur within the project limits: the San Gregorio, Hayward, Point Reyes, Rodgers Creek, Calaveras, and others. Table 3.6-1 lists the distances of these and other active or potentially active faults in the region (within 100 kilometers [62 miles]) from the existing Campus and their estimated maximum moment magnitudes. The San Andreas Fault is approximately 9.6 kilometers (6.0 miles) from the center of the Mission Bay area. The existing Campus and the Mission Bay area are not located within an “Earthquake Fault Zone,” as delineated by the California Geological Survey (CGS), and no active faults exist in either of these areas (Figure 3.6-1). (See “Alquist-Priolo Earthquake Fault Zoning Act,” below.)

1. Active faults are defined as those exhibiting either surface ruptures, topographic features created by faulting, surface displacements of geologically Recent (younger than about 11,700 years old) deposits, tectonic creep along fault lines, and/or close proximity to linear concentrations or trends of earthquake epicenters. Potentially active faults are those that have evidence of displacement of deposits of Quaternary age (the last 2 million years).

2. Maximum magnitude earthquakes (moment magnitude) are defined in *Probabilistic Seismic Hazard Assessment for the State of California* by the California Department of Conservation, Division of Mines and Geology, Open File Report 96-08.

3. Moment magnitude is an energy-based scale and provides a physically meaningful measure of the size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.
Figure 3.6-1: Major Faults and Earthquake Epicenters in the San Francisco Bay Area

NOTES: Digitized data for fault coordinates and earthquake catalog was developed by the California Department of Conservation Division of Mines and Geology. The historic earthquake catalog includes events from January 1800 to December 2000.
Table 3.6-1: Regional Faults and Seismicity

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Distance (km/mi) from SFVAMC Fort Miley Campus</th>
<th>Direction from SFVAMC Fort Miley Campus</th>
<th>Maximum Moment Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Andreas—1906 Rupture</td>
<td>5.6/3.5</td>
<td>Southwest</td>
<td>7.9</td>
</tr>
<tr>
<td>San Andreas—Peninsula</td>
<td>5.6/3.6</td>
<td>Southwest</td>
<td>7.2</td>
</tr>
<tr>
<td>San Andreas—North Coast South</td>
<td>8.8/5.5</td>
<td>West</td>
<td>7.5</td>
</tr>
<tr>
<td>San Gregorio North</td>
<td>9.8/6.1</td>
<td>West</td>
<td>7.3</td>
</tr>
<tr>
<td>Hayward—Total</td>
<td>23.8/14.8</td>
<td>Northeast</td>
<td>7.1</td>
</tr>
<tr>
<td>Northern Hayward</td>
<td>23.8/14.8</td>
<td>Northeast</td>
<td>6.6</td>
</tr>
<tr>
<td>Southern Hayward</td>
<td>28.4/17.6</td>
<td>East</td>
<td>6.9</td>
</tr>
<tr>
<td>Point Reyes</td>
<td>34.0/21.1</td>
<td>Northwest</td>
<td>6.8</td>
</tr>
<tr>
<td>Rodgers Creek</td>
<td>36.8/22.9</td>
<td>Northeast</td>
<td>7.1</td>
</tr>
<tr>
<td>Mount Diablo Thrust</td>
<td>41.7/25.9</td>
<td>East</td>
<td>6.7</td>
</tr>
<tr>
<td>Northern Calaveras</td>
<td>42.0/26.1</td>
<td>East</td>
<td>7.0</td>
</tr>
<tr>
<td>Monte Vista</td>
<td>44.4/27.6</td>
<td>Southeast</td>
<td>6.8</td>
</tr>
<tr>
<td>Concord</td>
<td>46.2/28.7</td>
<td>Northeast</td>
<td>6.5</td>
</tr>
<tr>
<td>Southern Green Valley</td>
<td>47.4/29.5</td>
<td>Northeast</td>
<td>6.5</td>
</tr>
<tr>
<td>West Napa</td>
<td>48.0/29.8</td>
<td>Northeast</td>
<td>6.5</td>
</tr>
<tr>
<td>Northern Greenville</td>
<td>53.4/33.2</td>
<td>Northeast</td>
<td>6.6</td>
</tr>
<tr>
<td>Great Valley—Segment 6</td>
<td>59.4/36.9</td>
<td>Northeast</td>
<td>6.7</td>
</tr>
<tr>
<td>Central Greenville</td>
<td>61.5/38.2</td>
<td>East</td>
<td>6.7</td>
</tr>
<tr>
<td>Northern Green Valley</td>
<td>62.1/38.6</td>
<td>Northeast</td>
<td>6.3</td>
</tr>
<tr>
<td>Hayward—South East Extension</td>
<td>64.0/39.7</td>
<td>Southeast</td>
<td>6.4</td>
</tr>
<tr>
<td>Great Valley—Segment 5</td>
<td>64.1/39.8</td>
<td>Northeast</td>
<td>6.5</td>
</tr>
<tr>
<td>Great Valley—Segment 4</td>
<td>69.5/43.2</td>
<td>Northeast</td>
<td>6.6</td>
</tr>
<tr>
<td>Central Calaveras</td>
<td>71.9/44.7</td>
<td>Southeast</td>
<td>6.6</td>
</tr>
<tr>
<td>Southern Greenville</td>
<td>73.9/45.9</td>
<td>East</td>
<td>6.9</td>
</tr>
<tr>
<td>Hunting Creek—Berryessa</td>
<td>79.0/49.1</td>
<td>North</td>
<td>6.9</td>
</tr>
<tr>
<td>Great Valley—Segment 7</td>
<td>80.3/49.9</td>
<td>East</td>
<td>6.7</td>
</tr>
<tr>
<td>San Andreas—Santa Cruz Mts.</td>
<td>80.6/50.1</td>
<td>Southeast</td>
<td>7.2</td>
</tr>
<tr>
<td>Sargent</td>
<td>87.1/54.1</td>
<td>Southeast</td>
<td>6.8</td>
</tr>
<tr>
<td>Mayacama—South</td>
<td>89.5/55.6</td>
<td>North</td>
<td>6.9</td>
</tr>
<tr>
<td>Zayante—Vergeles</td>
<td>90.3/56.1</td>
<td>Southeast</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Notes: km = kilometers; mi = miles; SFVAMC = San Francisco Veterans Administration Medical Center
Source: ENGEO, 2008
Ground Shaking

Existing SFVAMC Fort Miley Campus and Mission Bay Area

USGS has predicted that there is a 63 percent chance of a moment magnitude 6.7 earthquake or greater occurring in the San Francisco Bay Area over a period of 30 years, between 2003 and 2032 (USGS, 2008). The intensity of the seismic shaking during an earthquake depends on the distance and direction to the earthquake’s epicenter, the magnitude of the earthquake, and the area’s geologic conditions. The composition of underlying soils, even those relatively distant from faults, can intensify ground shaking. For this reason, earthquake intensities are also measured in terms of their observed effects at a given locality. Earthquakes occurring on faults closest to the existing SFVAMC Fort Miley Campus and other potential campus locations in the Mission Bay area would have the potential to generate the largest ground motions at those sites. A commonly used measure of earthquake intensity is the Modified Mercalli Intensity (MMI) scale, which is a subjective qualitative measure of the strength of an earthquake at a particular place as determined by its effects on objects and people at the Earth’s surface. Table 3.6-2 describes the effects of earthquakes based on their level on the MMI scale. The MMI values for intensity range from I (earthquake not felt) to XII (damage nearly total), and an earthquake will vary over the region of a fault and generally decrease with distance from the epicenter of the earthquake.

Soils and Bedrock

Existing SFVAMC Fort Miley Campus

Information from previous subsurface investigations at the existing SFVAMC Fort Miley Campus indicates that the site is underlain by 1–6 feet of artificial fill consisting of stiff to hard sand with varying amounts of clay and gravel, which is underlain by bedrock (ENGEIO, 2008; Treadwell & Rollo, 2010). Native soil, consisting of very stiff clay with bedrock fragments, underlies some of the fill at the Campus. Tests performed on the artificial fill indicate that it is nonexpansive; however, the native soil was found to be moderately to highly expansive (Treadwell & Rollo, 2010).

The existing SFVAMC Fort Miley Campus is underlain by intensely sheared rocks of the Franciscan Formation of Cretaceous age, described as a chaotic mixture of fragmented rock (USGS, 2002), which is shown on the geologic map of the San Francisco North USGS 7.5-Minute Quadrangle. This mapped unit generally includes rock fragments rounded by shearing and embedded in a soft matrix. The Campus is also adjacent to deposits of Holocene-age Dune Sand, which generally consist of clean, well-sorted, fine- to medium-grained sand. The Dune Sand is underlain by weathered Franciscan bedrock. The bedrock encountered locally at the site, from an elevation of 285–345 feet, consists of friable to moderately strong sandstone, claystone, and shale. Bedrock encountered at the site was closely fractured to crushed and highly to fully weathered (ENGEIO, 2008; Treadwell & Rollo, 2010; VA, 2010).
<table>
<thead>
<tr>
<th>Intensity</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Not felt. Marginal and long period effects of large earthquakes.</td>
</tr>
<tr>
<td>II</td>
<td>Felt by persons at rest, on upper floors, or favorably placed.</td>
</tr>
<tr>
<td>VII</td>
<td>Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.</td>
</tr>
<tr>
<td>VIII</td>
<td>Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.</td>
</tr>
<tr>
<td>IX</td>
<td>General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluvial areas sand and mud ejected, earthquake fountains, sand craters.</td>
</tr>
<tr>
<td>X</td>
<td>Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.</td>
</tr>
<tr>
<td>XI</td>
<td>Rails bent greatly. Underground pipelines completely out of service.</td>
</tr>
<tr>
<td>XII</td>
<td>Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.</td>
</tr>
</tbody>
</table>

Notes:
- **Masonry A:** Good workmanship, mortar, and design; reinforced, especially laterally, and bound together by using steel, concrete, etc.; designed to resist lateral forces.
- **Masonry B:** Good workmanship and mortar; reinforced, but not designed in detail to resist lateral forces.
- **Masonry C:** Ordinary workmanship and mortar; no extreme weaknesses like failing to tie in at corners, but neither reinforced nor designed against horizontal forces.
- **Masonry D:** Weak materials, such as adobe; poor mortar; low standards of workmanship; weak horizontally.

Source: ABAG, 2011
Mission Bay Area

The Mission Bay area is located within the San Francisco North USGS 7.5-Minute Quadrangle. Based on a review of the Geologic Map of the San Francisco–San Jose Quadrangle (Wagner et al., 1991), the Mission Bay area is underlain by the following geologic formations, discussed below: Alluvium, Artificial Fill, Dune Sand, and the Franciscan Assemblage (sandstone, shale, conglomerate, and serpentinized ultramafic rock).

Alluvium under the Mission Bay area consists of unconsolidated stream and basin deposits ranging from very small to boulder size; it is of Holocene age. Artificial Fill is also of Holocene age, and consists of nonnative materials placed at the edge of the San Francisco Bay to raise the land surface above sea level. Dune Sand in the Mission Bay area is of Holocene age.

The Franciscan Assemblage outcrops at the surface in two areas of the Mission Bay area. Immediately adjacent to the San Francisco–Oakland Bay Bridge, it is composed primarily of sandstone, shale, and conglomerate of marine origin and is Cretaceous in age (i.e., approximately 144 to 65 million years Before Present [B.P.]).

Southwest of the Bay Bridge, between Interstate 80/U.S. Highway 101 and Interstate 280, this formation outcrops as serpentinized ultramafic rocks of Jurassic age (i.e., approximately 206–144 million years B.P.). In addition to these two surface outcrops, the Franciscan Assemblage underlies all of the other formations described above.

Paleontological Resources

Paleontological Resource Inventory Methods

A stratigraphic inventory was completed to develop a baseline paleontological resource inventory of the existing SFVAMC Fort Miley Campus and the Mission Bay area and surrounding areas by rock unit, and to assess the potential paleontological productivity of each rock unit. Research methods included a review of published and unpublished literature and a search for recorded fossil sites at the University of California Museum of Paleontology (UCMP) (2011). These tasks complied with Society of Vertebrate Paleontology guidelines (SVP, 1995).

To better understand the stratigraphy of the existing SFVAMC Fort Miley Campus and the Mission Bay area, geologic maps and reports covering the geology of these areas were reviewed to determine the exposed rock units and to delineate their respective aerial distributions in the respective areas.

As part of the paleontological resource inventory, published and unpublished geological and paleontological literature was reviewed to document the number and locations of previously recorded fossil sites from rock units exposed in the San Francisco peninsula and vicinity, as well as the types of fossil remains that each rock unit has produced. The literature review was supplemented by an archival search conducted by AECOM at the UCMP in Berkeley, California, on March 17, 2011 (UCMP, 2011).

Because a review of aerial photographs indicates that at least 80 percent of the ground surface of the existing SFVAMC Fort Miley Campus and the Mission Bay area is obscured by buildings and pavement, a reconnaissance-level field survey was not performed.
Paleontological Resource Assessment Criteria

The potential paleontological importance of the existing SFVAMC Fort Miley Campus and the Mission Bay area can be assessed by identifying the paleontological importance of exposed rock units in these areas. Because the areal distribution of a rock unit can be easily delineated on a topographic map, this method is conducive to delineating parts of these areas that are of higher and lower sensitivity for paleontological resources.

A paleontologically important rock unit is one that has a high-potential paleontological productivity rating and is known to have produced unique, scientifically important fossils. The potential paleontological productivity rating of a rock unit exposed in the project locations refers to the abundance/densities of fossil specimens and/or previously recorded fossil sites in exposures of the unit in and near the project locations. Exposures of a specific rock unit on the existing SFVAMC Fort Miley Campus and in the Mission Bay area are most likely to yield fossil remains representing particular species in quantities or densities similar to those previously recorded from the unit in and near the project locations.

The tasks listed below were completed to establish the paleontological importance of each rock unit exposed at or near the existing SFVAMC Fort Miley Campus and the Mission Bay area.

- The potential paleontological productivity of each rock unit was assessed, based on the density of fossil remains previously documented within the rock unit.

- The potential for a rock unit exposed in the project area to contain a unique paleontological resource was considered.

Paleontologic Resource Inventory Results for the SFVAMC Fort Miley Campus and Mission Bay Area

Stratigraphic Inventory

Regional and local surficial geologic mapping and correlation of the various geologic units on the existing SFVAMC Fort Miley Campus and in the Mission Bay area and vicinity have been provided at a scale of 1:250,000 by Wagner, Bortugno, and McJunkin (Wagner et al., 1991).

Paleontological Resource Inventory and Assessment by Rock Unit

Based on a record search conducted at the UCMP, no previously recorded vertebrate fossil localities exist within the SFVAMC Fort Miley Campus (UCMP, 2011). The closest recorded vertebrate fossil was recovered from the Sutro Baths area, which is within the Golden Gate National Recreation Area, approximately one-third mile southwest of the existing SFVAMC Fort Miley Campus (Hay, 1927, as cited in Jefferson, 1991). In addition, a vertebrate fossil was recovered from Ocean Beach, approximately three-quarters mile southwest of the SFVAMC Fort Miley Campus (Savage, 1951, as cited in Jefferson, 1991). Both fossils were of Pleistocene age (i.e., approximately 1.8 million to 11,700 years B.P.).

The UCMP record search also indicated that there are no previously recorded vertebrate fossil localities within the Mission Bay area. However, UCMP sites V-3411 and V-69816 are located approximately 2,000 feet northeast of
the northeastern boundary of the Mission Bay area, at the San Francisco–Oakland Bay Bridge. These sites yielded specimens of Pleistocene-age mammoth and horse. UCMP site V-3410 is located approximately 1,000 feet south of the Mission Bay area’s southern boundary, at the Islais Creek Channel. This site yielded a specimen from an unknown Pleistocene-age mammal.

Alluvium, Artificial Fill, Dune Sand

By definition, an object must be more than 11,700 years old to be considered a unique paleontological resource. Because the Alluvium, Artificial Fill, and Dune Sand deposits on the existing SFVAMC Fort Miley Campus and in the Mission Bay area and vicinity are younger than 11,700 years B.P., these formations are considered to be of low paleontological sensitivity.

Franciscan Assemblage

The Franciscan Assemblage consists of various types of rocks that formed along the Pacific Oceanic Plate and the North American Plate; these rocks were subsequently deformed and metamorphosed during subduction of the Pacific Oceanic Plate. Various authors have reported the presence of marine invertebrates in the Franciscan Assemblage throughout California (see, for example, Bailey et al., 1964); however, marine invertebrate fossil specimens are generally common, well developed, and well documented. They would generally not be considered a unique paleontological resource. Reports of vertebrate fossils from the Franciscan Assemblage are rare (e.g., only two localities have been recorded by the UCMP: one in San Joaquin County and one in San Luis Obispo County). Because of the nature of this rock assemblage (i.e., vertebrate fossils in the original parent material generally would have been destroyed during the subduction and metamorphosis process) and the general lack of previously recorded vertebrate fossil localities, this formation is considered to have a low paleontological sensitivity.

3.6.2 Regulatory Framework

Clean Water Act

The Clean Water Act (CWA) (33 U.S. Code [USC] 1251 et seq.) includes provisions for reducing soil erosion for the protection of water quality. The CWA makes the discharge of pollutants from a point source to navigable waters unlawful, unless a permit was obtained under the provisions of the CWA. Regulation of discharges under the CWA also pertains to construction sites where soil erosion and stormwater runoff and other pollutant discharges could affect downstream water quality. The CWA is described in greater detail in Section 3.8, “Hydrology and Water Quality.”

Executive Order 12699

Executive Order 12699, “Seismic Safety of Federal and Federally Assisted or Regulated New Building Construction,” was signed by President George H. W. Bush on January 5, 1990, to further the goals of Public Law 95-124, the Earthquake Hazards Reduction Act of 1977, as amended. The executive order applies to new construction of buildings owned, leased, constructed, assisted, or regulated by the federal government. Guidelines and procedures for implementing the order were prepared in 1992 by the federal Interagency Committee on Seismic Safety in Construction. The guidelines establish minimum acceptable seismic safety standards, provide
evaluation procedures for determining the adequacy of local building codes, and recommend implementation procedures. Each federal agency is independently responsible for ensuring that appropriate seismic design and construction standards are applied to new construction under its jurisdiction.

Under the original Executive Order 12699, the model code for the West Coast was the Uniform Building Code developed by the International Conference of Building Officials. In 1994, the International Conference of Building Officials joined with other similar organizations in the Southeast and on the East Coast to form the International Code Council (ICC). In 2000, the ICC published the first International Building Code (IBC) based on the reassessment of earlier codes and the combined updated experience of ICC member organizations. The current 2009 IBC is the result of nearly 100 years of building code improvement.

Executive Order 12941

Executive Order 12941, “Seismic Safety of Existing Federally Owned or Leased Buildings,” was signed by President Bill Clinton on December 1, 1994, to mandate the seismic safety of existing federally owned or leased buildings by adopting RP4 Standards. The standards, developed by the Interagency Committee on Seismic Safety in Construction, were adopted as the minimum level acceptable for use by federal departments and agencies in assessing the seismic safety of their owned and leased buildings and in mitigating unacceptable seismic risk in those buildings. Executive Order 12941 mandates the seismic retrofitting of certain buildings at the existing SFVAMC Fort Miley Campus, which is described below in Section 3.6.3, “Environmental Consequences.”

International Building Code

The IBC, which encompasses the former Uniform Building Code, is produced by the ICC to provide standard specifications for engineering and construction activities, including measures to address geologic and soil concerns. Specifically, these measures encompass issues such as seismic loading (e.g., classifying seismic zones and faults), ground motion, and engineered fill specifications (e.g., compaction and moisture content). The referenced guidelines, while not serving as formal regulatory requirements per se, are widely accepted by regulatory authorities and are routinely included in related standards such as grading codes. The IBC guidelines are updated regularly to reflect current industry standards and practices, including criteria from sources such as the American Society of Civil Engineers and ASTM International (formerly known as the American Society for Testing and Materials).

Earthquake Hazards Reduction Act

In October 1977, the U.S. Congress passed the Earthquake Hazards Reduction Act (42 USC 7701 et seq.) to “reduce the risks to life and property from future earthquakes in the United States through the establishment and maintenance of an effective earthquake hazards and reduction program” (42 USC 7702). To accomplish this, the act established the National Earthquake Hazards Reduction Program (NEHRP). The National Earthquake Hazards Reduction Program Act (NEHRPA) significantly amended this program in November 1990 by refining the description of agency responsibilities, program goals, and objectives. The NEHRPA designates the Federal Emergency Management Agency (FEMA) as the lead agency of the program and assigns FEMA several planning, coordinating, and reporting responsibilities. Other NEHRPA agencies include the National Institute of Standards and Technology, the National Science Foundation, and USGS.
Veterans Health Administration Directive 2005-019

The purpose of Veterans Health Administration (VHA) Directive 2005-019 is to establish a policy regarding the seismic safety of VHA buildings. Because facilities identified as essential must remain in operation after a seismic event, VHA Directive 2005-019 assists VA in providing adequate life-safety protection to Veterans, employees, and other building occupants. In compliance with Executive Order 12941, VA developed an inventory of its owned or leased buildings identifying their seismic risk. These data were reported to FEMA in January 1999. Under VHA Directive 2005-019, all new buildings must be structurally designed and constructed in compliance with VA Seismic Design Requirements H-18-8 and the IBC (VA, 2005). A major update of the VA Seismic Design Requirements H-18-8 (formerly known as H-08-8) was implemented in 1995. The current VA Seismic Design Requirements would be applicable to proposed new SFVAMC buildings.

Alquist-Priolo Earthquake Fault Zoning Act

The California Alquist-Priolo Earthquake Fault Zoning Act (Alquist-Priolo Act) was enacted in December 1972 to mitigate the hazard of surface faulting to structures for human occupancy. Surface rupture is the most easily avoided seismic hazard. The Alquist-Priolo Act’s main purpose is to prevent the construction of buildings used for human occupancy on the surface trace of active faults.

The Alquist-Priolo Act addresses only the hazard of surface fault rupture and is not directed toward other earthquake hazards. The California Seismic Hazards Mapping Act, enacted in 1990, addresses earthquake hazards caused by nonsurface fault rupture, including liquefaction and seismically induced landslides. The law requires the State Geologist to establish regulatory zones, known as earthquake fault zones, around the surface traces of active faults and to issue appropriate maps. The maps are distributed to all affected cities, counties, and State agencies for their use in planning and controlling new or renewed construction. Local agencies must regulate most development projects within the zones. Projects include all land divisions and most structures for human occupancy. Before a project can be permitted, cities and counties must require a geologic investigation to demonstrate that proposed buildings will not be constructed across active faults. An evaluation and written report of a specific site must be prepared by a licensed geologist. If an active fault is found, a structure for human occupancy cannot be placed over the trace of the fault and must be set back 50 feet from the fault trace.

Because no active fault zones are known to exist in San Francisco, no earthquake fault zones under the Alquist-Priolo Act are mapped in the City and County of San Francisco.

Archaeological Resources Protection Act

The Archaeological Resources Protection Act (ARPA) amended the Antiquities Act of 1906 (16 USC 431–433) and set a broad policy that archaeological resources are important to the nation and should be protected, and required special permits before the excavation or removal of archaeological resources from public or Indian lands. The purpose of ARPA was to secure, for the present and future benefit of the American people, the protection of archaeological resources and sites that are on public lands and Indian lands, and to foster increased cooperation and exchange of information between governmental authorities, the professional archaeological community, and private individuals having collections of archaeological resources and data that were obtained before October 31,
1979. Compliance with ARPA is required for Alternatives 1, 2, and 3 because the project site is located on public (federal) land; however, no actions are needed to comply with ARPA unless excavation of archaeological resources becomes necessary.

Society of Vertebrate Paleontology Guidelines

The Society of Vertebrate Paleontology (SVP, 1995, 1996), a national scientific organization of professional vertebrate paleontologists, has established standard guidelines that outline acceptable professional practices in the conduct of paleontological resource assessments and surveys, monitoring and mitigation, data and fossil recovery, sampling procedures, specimen preparation, analysis, and curation. Most practicing professional paleontologists in the nation adhere to the Society of Vertebrate Paleontology’s assessment, mitigation, and monitoring requirements, as specifically spelled out in its standard guidelines.

3.6.3 **Environmental Consequences**

Significance Criteria

A NEPA evaluation must consider the context and intensity of the environmental effects that would be caused by, or result from, the EIS Alternatives. There is currently no Council on Environmental Quality guidance related to the analysis of geology and soils impacts. Therefore, other environmental assessment documents were reviewed and the following criteria were selected for evaluation.

Geology and Soils

An Alternative analyzed in this EIS is considered to result in an adverse impact related to geology and soils if it would:

- expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving strong seismic ground shaking, or seismic-related ground failure, including liquefaction or landslides;

- be located on a geologic unit or soil that is unstable, or would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse; or

- be located on expansive soil creating substantial risks to life or property.

Paleontological Resources

An Alternative analyzed in this EIS is considered to result in an adverse impact related to paleontological resources if it would:

- destroy a unique paleontological resource or site.
Assessment Methods

Geology and Soils

The significance of impacts associated with faulting, ground acceleration, and ground shaking was evaluated based on distance to known fault zones as well as the seismic characteristics of fault zones. Effects of the EIS Alternatives on soils that possess a moderate to severe potential for erosion and liquefaction could be adverse impacts. Soil erosion impacts are also discussed in Section 3.8, “Hydrology and Water Quality.” As noted above, San Francisco is not located within an “Earthquake Fault Zone” as delineated by CGS, and no active faults exist either on the existing SFVAMC Fort Miley Campus or in the Mission Bay area; thus, exposure of people or structures to surface fault rupture is not evaluated below.

Paleontological Resources

In its standard guidelines for assessment and mitigation of adverse impacts on paleontological resources, the Society of Vertebrate Paleontology (SVP 1995) established three categories of sensitivity for paleontological resources: high, low, and undetermined. Areas where fossils have been previously found are considered to have a high sensitivity and a high potential to produce fossils. Areas that are not sedimentary in origin and that have not been known to produce fossils in the past typically are considered to have low sensitivity. Areas that have not had any previous paleontological resource surveys or fossil finds are considered to be of undetermined sensitivity until surveys and mapping are performed to determine their sensitivity. After reconnaissance surveys, observation of exposed cuts, and possibly subsurface testing, a qualified paleontologist can determine whether the area should be categorized as having high or low sensitivity. In keeping with the significance criteria of the Society of Vertebrate Paleontology (SVP 1995), all vertebrate fossils are generally categorized as being of potentially significant scientific value.

To assess the potential paleontological impacts associated with LRDP implementation, a “unique paleontological resource or site” was defined as an individual or collection of vertebrate fossil specimens that is identifiable and well preserved, and meets one or more of the following criteria:

- a type specimen (i.e., the individual from which a species or subspecies has been described);
- a member of a rare species;
- a species that is part of a diverse assemblage (i.e., a site where more than one fossil has been discovered) wherein other species are also identifiable, and important information regarding life history of individuals can be drawn;
- a skeletal element different from, or a specimen more complete than, those now available for its species; or
- a complete specimen (i.e., all or substantially all of the entire skeleton is present).

The value or importance of different fossil groups varies depending on the age and depositional environment of the rock unit that contains the fossils, their rarity, the extent to which they have already been identified and documented, and the ability to recover similar materials under more controlled conditions (such as for a research project). Marine invertebrates are generally common; the fossil record is well developed and well documented,
and they would generally not be considered a unique paleontological resource. Identifiable vertebrate marine and terrestrial fossils are generally considered scientifically important because they are relatively rare.

Alternative 1: SFVAMC Fort Miley Campus Buildout Alternative

Short-Term Projects

Construction

Alternative 1 short-term projects would involve new development and/or seismic retrofitting of patient care, research, administrative, hotel, and parking structures on the existing 29-acre SFVAMC Fort Miley Campus through 2020, as mandated by Executive Order 12941. These projects would be constructed in 17 projects over 7 years. Alternative 1 short-term projects would involve construction of 600,992 gross square feet (gsf) (384,452 of which would be net new gsf) at the SFVAMC Fort Miley Campus (Table 2-1 and Figure 2-1). In addition to new development and associated demolition, buildings would be retrofitted according to VA seismic design requirements (VA Directive H-18-8) because VA has identified these buildings as Critical or Essential Facilities for the existing SFVAMC Fort Miley Campus. The seismic retrofitting of those buildings under Alternative 1 short-term projects would result in a minor impact or no impact related to geology and soils.

Erosion and Loss of Topsoil

Construction of Alternative 1 short-term projects would involve site grading and preparation of approximately 6.72 acres, which would disturb exposed subsurface soils, including fill and underlying native soils. Despite previous development of the existing SFVAMC Fort Miley Campus, loose and compacted soil exists on-site in landscaped and open space areas and areas that would undergo construction or maintenance. Exposed fill materials would be susceptible to erosion during project construction excavation. Erosion resulting from stormwater runoff could occur during the project construction process, although most loosened and eroded soil would remain within the excavation pits. A National Pollutant Discharge Elimination System (NPDES) general permit for stormwater discharges associated with construction activities (Construction General Permit; Order 2009-0009-DWQ, as amended by Order 2010-0014-DWQ) would be required for the implementation of short-term project components. Sites that disturb 1 acre or more and drain to the combined sewer-stormwater system must comply with the San Francisco Public Utilities Commission’s Construction Site Runoff Control Program. Specifically, this requires the submittal of an erosion and sediment control plan and implementation of best management practices to prevent illicit discharge into the combined sewer systems. With implementation of the Construction Site Runoff Control Program, the construction of Alternative 1 short-term projects would result in a minor impact or no impact related to erosion and loss of topsoil.

Alteration of Topography

Alternative 1 short-term projects would result in below-grade development in the form of one level of basement for proposed Building 40 and proposed Building 23. In addition, as a conservative estimate, excavation of 24 feet below grade for each new structure is assumed in this EIS. Topography at the existing SFVAMC Fort Miley Campus would not be substantially altered and the proposed buildings would be constructed following applicable VA seismic design requirements (VA Directive H-18-8) and the IBC; therefore, the construction of Alternative 1 short-term projects would result in a minor impact or no impact related to alteration of topography.
Paleontological Resources

The existing SFVAMC Fort Miley Campus is underlain by Artificial Fill and the Franciscan Assemblage. Dune Sand may also be encountered. Because of the young age of the Artificial Fill and Dune Sand and the way in which the Franciscan Assemblage was formed, they are considered to be of low paleontological sensitivity. Furthermore, the result of a records search at the UCMP indicated that no fossils have been recovered from areas beneath the Campus. Therefore, construction activities at the existing Campus would have a direct minor impact or no impact on unique paleontological resources. No indirect impacts would occur.

Operation

Alternative 1 short-term projects would involve new development and/or retrofitting of patient care, research, administrative, hotel, and parking structures on the existing 29-acre SFVAMC Fort Miley Campus. The seismic retrofit of existing buildings is mandated by Executive Order 12941. After the seismic retrofitting of Buildings 1, 5, 6, 8, 7, 9, and 10 (as part of the short-term projects), this alternative would result in a beneficial operational impact because the buildings would be built to current VA seismic standards.

Seismically Induced Ground Shaking and Ground Failure

Liquefaction typically occurs when saturated, clean, fine-grained loose sands near the surface (usually within the upper 50 feet), coupled with a shallow groundwater table, are subject to intense ground shaking. One of the major types of liquefaction-induced ground failures is lateral spreading of mildly sloping ground. Lateral spreading is a failure within a nearly horizontal soil zone (possibly as a result of liquefaction) that causes the overlying soil mass to move toward a free face or down a gentle slope. The existing SFVAMC Fort Miley Campus is not located in an area that is mapped as a liquefaction hazard zone (CGS, 2000) and groundwater was not encountered during previous borings/geotechnical investigations (ENGEO, 2008; Treadwell & Rollo, 2010). Lateral spreading at the site is unlikely because no liquefaction hazard is present at the Campus (Treadwell & Rollo, 2010). Subsidence, the sinking or settling of land, is caused by compaction of unconsolidated soils during a seismic event, compaction by heavy structures, erosion of peat soils, or groundwater depletion. Subsidence usually occurs over a broad area and therefore is not detectable at the ground surface. This normally occurs in areas underlain by alluvial soils, which are not expected to be present at the existing Campus. Alternative 1 short-term projects would result in a minor impact or no impact related to induced seismic ground shaking and associated ground failure.

Seismically Induced Landslides or Slope Failures

Landslides and other slope failures are common occurrences during or soon after earthquakes. The existing SFVAMC Fort Miley Campus is not located in a designated landslide hazard zone (CGS, 2000), and no evidence of landslides was observed from a previous investigation (Treadwell & Rollo, 2010). However, there are two mapped landslide scars to the north of the Campus and another previous landslide area on the northern slope of the Campus. The mapped landslides are outside the proposed development footprint and do not pose a risk to the development activities associated with Alternative 1 short-term projects (ENGEO, 2008; Treadwell & Rollo, 2010). Therefore, no impact related to seismically induced landslides or slope failures would result from the operation of Alternative 1 short-term projects.
Expansive or Corrosive Soils

Expansive soils generally result when specific clay minerals expand when saturated and shrink in volume when dry. Native soil on the existing SFVAMC Fort Miley Campus was found to be moderately to highly expansive (Treadwell & Rollo, 2010). Design and construction of the proposed facilities would address any potential expansive or corrosive soils through engineering and design recommendations for the proposed facilities. Therefore, a minor impact or no impact related to expansive or corrosive soils would result from facility operation for Alternative 1 short-term projects.

Paleontological Resources

Because operation of Alternative 1 short-term projects would not involve ground disturbance, no direct or indirect impacts on paleontological resources would occur.

Long-Term Projects

The Alternative 1 long-term projects would involve one project for the construction of Building 213 (Clinical Addition Building) over 24 months. The Alternative 1 long-term project would involve construction of 170,000 gsf, which would all be net new gsf, at the existing SFVAMC Fort Miley Campus (Table 2-2 and Figure 2-2).

Construction

Erosion and Loss of Topsoil

The erosion and topsoil effects of constructing the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be less than those described for Alternative 1 short-term projects. Construction of Building 213 would disturb 0 net acres of soil, because Building 12 demolition (on the footprint of proposed Building 213) would have already occurred during short-term projects. There would be no impact related to erosion and loss of topsoil.

Alteration of Topography

The topographical effects of constructing the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. One basement level of excavation is anticipated for the proposed Building 213. Alteration of topography would result in a minor impact or no impact.

Paleontological Resources

The effects on paleontological resources from constructing the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. There would be a minor impact or no impact related to paleontological resources.
Operation

Seismically Induced Ground Shaking and Ground Failure

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. There would be a minor impact or no impact related to seismically induced ground shaking and associated ground failure.

Seismically Induced Landslides or Slope Failures

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. No impact related to seismically induced landslides or slope failures would result from the operation of facilities proposed in the Alternative 1 long-term project.

Expansive or Corrosive Soils

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. There would be a minor impact or no impact related to expansive or corrosive soils.

Paleontological Resources

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under the Alternative 1 long-term project would be similar to those described for Alternative 1 short-term projects. A minor impact or no impact on paleontological resources would result from the operation of the facilities proposed in the Alternative 1 long-term project.

Alternative 2: SFVAMC Fort Miley Campus Buildout Alternative

Short-Term Projects

Alternative 2 short-term projects at the existing SFVAMC Fort Miley Campus would be the same as Alternative 1 short-term projects, with one exception. Specifically, retrofitting of the existing Buildings 1, 6, and 8 would not occur as part of Alternative 2 short-term projects (Table 2-3 and Figure 2-3), but would instead be accomplished in the long term. Alternative 2 short-term projects would involve construction of a total of 485,445 gsf (384,452 of which would be net new gsf), which is 115,547 gsf less than for Alternative 1 short-term projects. Therefore, impacts of Alternative 2 short-term projects would be similar to or less than those of Alternative 1 short-term projects. Geology, soils, and paleontological resources impacts would range in significance from minor to no impact.
Construction

Erosion and Loss of Topsoil

Demolition, excavation, and grading activities associated with Alternative 2 short-term projects would disturb approximately 6.72 acres, which would expose subsurface soils, including fill and underlying native soils. Despite previous development of the existing SFVAMC Fort Miley Campus, loose and compacted soil exists on-site in landscaped and open space areas and areas that would undergo construction or maintenance. Exposed fill materials would be susceptible to erosion during excavation for project construction. Erosion resulting from stormwater runoff could occur during the project construction process, although most loosened and eroded soil would remain within the excavation pits. An NPDES general permit for stormwater discharges associated with construction activities (Construction General Permit; Order 2009-0009-DWQ, as amended by Order 2010-0014-DWQ) would be required for the implementation of short-term project components. Sites that disturb one acre or more and drain to the combined sewer-stormwater system must comply with the San Francisco Public Utilities Commission’s Construction Site Runoff Control Program. Specifically, this would require the submittal of an erosion and sediment control plan and implementation of best management practices to prevent illicit discharge into the combined sewer systems. With implementation of the Construction Site Runoff Control Program, the impacts of construction of Alternative 2 short-term projects related to erosion and loss of topsoil would be similar to those of Alternative 1 short-term projects and would be minor or no impact.

Alteration of Topography

Similar to Alternative 1 short-term projects, Alternative 2 short-term projects would result in below-grade development in the form of one level of basement for proposed Building 40 and proposed Building 23. In addition, as a conservative estimate, excavation of 24 feet below grade for each new structure is assumed in this EIS. Topography at the existing SFVAMC Fort Miley Campus would not be substantially altered and the proposed buildings would be constructed following applicable VA seismic design requirements (VA Directive H-18-8) and the IBC; therefore, the construction of Alternative 2 short-term projects would result in a minor impact or no impact related to alteration of topography.

Paleontological Resources

The existing SFVAMC Fort Miley Campus is underlain by Artificial Fill and the Franciscan Assemblage. Dune Sand may also be encountered. Because of the young age of the Artificial Fill and Dune Sand and the way in which the Franciscan Assemblage was formed, they are considered to be of low paleontological sensitivity. Furthermore, the result of a records search at the UCMP indicated that no fossils have been recovered from areas beneath the Campus. Therefore, similar to the impact from Alternative 1, construction activities at the existing Campus under Alternative 2 short-term projects would have a minor impact or no impact on unique paleontological resources.
Seismically Induced Ground Shaking and Ground Failure

The existing SFVAMC Fort Miley Campus is not located in an area that is mapped as a liquefaction hazard zone (CGS, 2000) and groundwater was not encountered during previous borings/geotechnical investigations (ENGELO, 2008; Treadwell & Rollo, 2010). Lateral spreading at the site is unlikely because no liquefaction hazard is present at the Campus (Treadwell & Rollo, 2010). Subsidence, the sinking or settling of land, is caused by compaction of unconsolidated soils during a seismic event, compaction by heavy structures, erosion of peat soils, or groundwater depletion. Subsidence usually occurs over a broad area and therefore is not detectable at the ground surface. This normally occurs in areas underlain by alluvial soils, which are not expected to be present at the existing Campus. Alternative 1 short-term projects would result in a minor impact or no impact related to induced seismic ground shaking and associated ground failure.

Seismically Induced Landslides or Slope Failures

Landslides and other slope failures are common occurrences during or soon after earthquakes. The existing SFVAMC Fort Miley Campus is not located in a designated landslide hazard zone (CGS, 2000), and no evidence of landslides was observed from a previous investigation (Treadwell & Rollo, 2010). However, there are two mapped landslide scarps to the north of the Campus and another previous landslide area on the northern slope of the Campus. The mapped landslides are outside the proposed development footprint and do not pose a risk to the development activities associated with Alternative 2 short-term projects (ENGELO, 2008; Treadwell & Rollo, 2010). Therefore, no impact related to seismically induced landslides or slope failures would result from the operation of Alternative 2 short-term projects.

Expansive or Corrosive Soils

Expansive soils generally result when specific clay minerals expand when saturated and shrink in volume when dry. Native soil on the existing SFVAMC Fort Miley Campus was found to be moderately to highly expansive (Treadwell & Rollo, 2010). Design and construction of the proposed facilities would address any potential expansive or corrosive soils through engineering and design recommendations for the proposed facilities. Therefore, a minor impact or no impact related to expansive or corrosive soils would result from facility operation for Alternative 2 short-term projects.

Paleontological Resources

Because operation of Alternative 2 short-term projects would not involve ground disturbance, no direct or indirect impacts on paleontological resources would occur.

Long-Term Projects

Alternative 2 long-term projects at the existing SFVAMC Fort Miley Campus would be the same as the Alternative 1 long-term project, with one exception. Specifically, three additional existing buildings—Buildings 1, 6, and 8—would be retrofitted as part of Alternative 2 long-term projects (Table 2-2b and Figure 2-2b). The seismic retrofit is mandated by Executive Order 12941 and VA has identified these buildings as Critical or
Essential Facilities for the existing SFVAMC Fort Miley Campus; therefore, those buildings would undergo retrofitting according to VA seismic design requirements (VA Directive H-18-8). Alternative 2 long-term projects would involve construction of a total of 285,487 gsf, which is 115,487 gsf more than for the Alternative 1 long-term project, because Alternative 2 would involve construction of Building 213 in addition to the seismic retrofit of Buildings 1, 6, and 8. Therefore, construction impacts of Alternative 2 long-term projects would be similar to, although slightly greater than, those of the Alternative 1 long-term project. Geology, soils, and paleontological impacts would range in significance from minor to no impact.

Construction

Erosion and Loss of Topsoil

The erosion and topsoil effects of constructing the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be less than those described for short-term projects under Alternatives 1 and 2. Constructing Building 213 and retrofitting Buildings 1, 6, and 8 would disturb 0 net acres of soil because demolition of Building 12 (on the footprint of proposed Building 213) would have already occurred during the short-term projects. No impact related to erosion and loss of topsoil would occur.

Alteration of Topography

The topographical effects of constructing the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. One basement level of excavation is anticipated for proposed Building 213, and no excavation would be necessary for retrofitting of Buildings 1, 6, and 8. The alteration of topography under Alternative 2 would result in a minor impact or no impact.

Paleontological Resources

The effects on paleontological resources from constructing the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. There would be a minor impact or no impact related to paleontological resources.

Operation

Seismically Induced Ground Shaking and Ground Failure

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. There would be a minor impact or no impact related to seismically induced ground shaking and associated ground failure.

Seismically Induced Landslides or Slope Failures

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. No impact related to seismically induced landslides or slope failures would occur.
Expansive or Corrosive Soils

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. A minor impact or no impact related to expansive or corrosive soils would result from the operation of the facilities proposed in Alternative 2 long-term projects.

Paleontological Resources

The effects of operating the clinical and research buildings and administrative/mixed-use buildings under Alternative 2 long-term projects would be similar to those described for short-term projects under Alternatives 1 and 2. A minor impact or no impact on paleontological resources would occur.

Alternative 3: SFVAMC Fort Miley Campus Plus Mission Bay Campus Alternative

Short-Term Projects

Alternative 3 short-term projects (during both construction and operation) would be the same as short-term projects for Alternative 1; thus, all Alternative 3 short-term projects would be located at the SFVAMC Fort Miley Campus. See Table 2-1 for detailed square footage and phasing, and Figure 2-1 for the Footprint and Concept Plan for Alternative 3 short-term projects through mid-2020. Therefore, impacts of Alternative 3 short-term projects related to geology, soils, and paleontological resources would be the same as those described for short-term projects for Alternative 1. These impacts would range in significance from minor to no impact.

Long-Term Projects

Alternative 3 long-term projects (during both construction and operation) would involve developing 170,000 gsf for ambulatory care and parking structure uses at a potential new SFVAMC Mission Bay Campus. See Figure 2-5 for the location of the off-site portion of Alternative 3.

It is assumed that all off-site development in Mission Bay would consist of four-story buildings (or other multi-story buildings consistent with other proximate buildings) in a development area totaling approximately 0.98 acre. Alternative 3 long-term projects at the potential new Mission Bay Campus would be constructed roughly between 2024 and 2027. See Table 2-5 for detailed square footage and phasing for implementation of the Alternative 3 long-term projects at the potential new Mission Bay Campus. Note that the actual footprint and concept plan for and site location within Mission Bay has not been determined at this time.

Construction

Consistent with VHA Directive 2005-019, all new buildings would be structurally designed and constructed in compliance with VA Seismic Design Requirements H-18-8 and the IBC. Thus, before construction—specifically, at the time that a specific site is selected—a geotechnical report for development of the potential new SFVAMC Mission Bay Campus would be prepared with recommendations to protect against seismic impacts. However, construction would have no impact related to induced seismic activities.
Erosion and Loss of Topsoil

The effects of constructing new buildings, medical facilities, and parking structures at the potential new SFVAMC Mission Bay Campus under Alternative 3 long-term projects would be addressed at the time that a specific site is selected. Similar to the Alternative 1 long-term project, construction of the Alternative 3 long-term projects would require an NPDES general permit for stormwater discharges associated with construction activities (Construction General Permit; Order 2009-0009-DWQ, as amended by Order 2010-0014-DWQ). Sites that disturb one acre or more and drain to the combined sewer-stormwater system must comply with the San Francisco Public Utilities Commission’s Construction Site Runoff Control Program. Specifically, this requires the submittal of an erosion and sediment control plan and implementation of best management practices to prevent illicit discharge into the combined sewer systems. With implementation of the Construction Site Runoff Control Program, the construction of Alternative 3 long-term projects at the potential new SFVAMC Mission Bay Campus would result in a minor impact or no impact.

Alteration of Topography

The effects of constructing new buildings, medical facilities, and parking structures at the potential new SFVAMC Mission Bay Campus under Alternative 3 long-term projects would be addressed at the time that a specific site is selected. The new buildings would be constructed in accordance with applicable VA Seismic Design Requirements H-18-8 and the IBC. Therefore, construction activities at the potential new Campus would result in a minor impact or no impact.

Paleontological Resources

The location of the potential new SFVAMC Mission Bay Campus is underlain by Artificial Fill, Alluvium, Dune Sand, and the Franciscan Assemblage. Because of the young age of the Artificial Fill, Alluvium, and Dune Sand and the way in which the Franciscan Assemblage was formed, they are considered to be of low paleontological sensitivity. The result of a records search at the UCMP indicated that no fossils have been recovered from areas beneath the Mission Bay area. Therefore, construction activities at the potential new Campus would have a direct minor impact on unique paleontological resources. No indirect impacts would occur.

Operation

Seismically Induced Ground Shaking and Ground Failure

Engineering and design recommendations for the proposed facilities would be followed during construction of Alternative 3 long-term projects to address the potential for seismically induced ground shaking and associated ground failure. The facilities would be designed and constructed to meet VA’s seismic design requirements. Thus, operation of the facilities constructed under Alternative 3 long-term projects would result in a minor impact or no impact related to seismically induced ground shaking and associated ground failure.

Seismically Induced Landslides or Slope Failures

Given the generally flat topography of the Mission Bay area, it is likely that a potential new SFVAMC Mission Bay Campus would be developed in an area that is relatively flat with no slopes that are susceptible to landslides.
or other types of failure. Any new facilities built at a potential new Campus would be required to meet seismic code standards applicable to San Francisco. Thus, no operational impact related to seismically induced landslides or slope failures is anticipated with implementation of Alternative 3 long-term projects.

Expansive or Corrosive Soils

Expansive soils generally result when specific clay minerals expand when saturated and shrink in volume when dry. Engineering and design recommendations for the proposed facilities would be followed during construction of Alternative 3 long-term projects to address any potential expansive or corrosive soils. Therefore, facility operation for Alternative 3 long-term projects would result in a minor impact or no impact related to expansive or corrosive soils.

Paleontological Resources

Because operation of Alternative 3 long-term projects would not involve ground disturbance, no direct or indirect impacts on paleontological resources would occur.

Alternative 4: No Action Alternative

Short-Term and Long-Term Projects

Construction

Under Alternative 4, there would be no construction or seismic retrofitting. Therefore, no construction-related impacts on geology, soils, or paleontological resources would occur.

Operation

Under Alternative 4, the LRDP would not be implemented, and the existing SFVAMC Fort Miley Campus would continue to function at its current capacity. Buildings 1, 5, 6, 7, 8, 7, 9, and 10 at the existing Campus (all of which are Critical or Essential Facilities) would not undergo seismic retrofitting. Because these buildings would continue to operate below current VA seismic standards, selecting Alternative 4 could result in adverse geotechnical impacts on structures from seismically induced ground shaking and ground failure, seismically induced landslides, or slope failures. However, because operation of facilities under Alternative 4 would not involve ground disturbance, no impacts related to geology, soils, or paleontological resources could occur.

3.6.4 References

ENGEIO. 2008 (May 27). Geotechnical Exploration: Veterans Administration Medical Center Building 22.

Treadwell & Rollo. 2010. Geotechnical Investigation; VMU Replacement and Expansion Project, San Francisco VA Medical Center (SFVAMC), San Francisco, CA.

———. 2010 (July 28). San Francisco VA Medical Center Mental Health Patient Parking Addition Project No. 662-CSI-612, FONSI and Final Environmental Assessment and Response to Comments.
